

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

The 4th International Symposium on Dynamic Hazards in Underground Coal Mines 22~23, June 2019; CUMT, Xuzhou, China

Geomechanical methods of rockburst prediction used in Polish coal mines theory and practice

> **Piotr Małkowski, Zbigniew Niedbalski, Radosław Pomykała** *Faculty of Mining and Geoengineering, Department of Geomechanics, Civil Engineering and Geotechnics niedzbig@agh.edu.pl, malkgeom@agh.edu.pl, rpomyk@agh.edu.pl*

Where we are

KRAKÓW Founded in 1257 Former capitol of Poland

In 1919, Józef Piłsudski, the Head of the State, inaugurated the Academy of Mining – Akademia Górnicza - AG. The first technical university in AGH UST history

In 1919, Józef Piłsudski, the

Head of the State, inaugurated

the Academy of Mining –

Akademia Górnicza - AG. The

first technical university in

Poland.

> In 1947, an internal resolution was adopted to change the name to the **Academy of Mining and Metallurgy – Akademia Górniczo-Hutnicza - AGH**

Main facts about rockburst hazard in Polish hard coal mines

- » Depth of coal exploitation 500–1,300 m, average ca. 800 m
- » About 50% coal is mined from seams with rockburst hazard
- » Multiples seam exploitation (10-15 seams)
- » Complex of geological and mining conditions
- » Influence of mining tremors on surface objects and people
- » Necessity of rockburst hazard prediction for maximum 3-year periods

Numbers of rockburst in last 5 years in Polish coal mines

Rockburst hazard studies

- » Rock mass and coal proneness to rockburst laboratory test and empirical analysis based on lithology
- » Prediction of the places with stress concentration
- » The estimation of the influence of mining tremors on the surface

Rock mass and coal proneness to rockburst

Time of coal dynamic disintegration - ODR

The index deriving in uniaxial compression test with strain rate of 0.02/s ~1mm/s. The strain-stress characteristics is the basis of the analysis. ODR index is the time difference between the coal sample disintegration starts at $\sigma_{\!cr}$ = *UCS* and it reaches the residual stress $\sigma_{\!red}$

AGH

Potential elastic energy index for rocks - P_{ES}

The assessment of rock to burst under pressure can be show with **potential energy elastic strain** Φ_{el} , which can be accumulated in volume *V* of rock during its deformation. Based on the strength and deformation parameters derived in uniaxial compression test, energy of elastic deformation can we draw as:

$$
\Phi_{el} = \frac{\sigma^2}{2E} V \qquad \text{where:} \qquad \sigma = \gamma \cdot H \qquad \text{vertical stress}
$$

Max. value of energy in rock is in moment where the stress got unixal strength σ_c . : $\sigma = \sigma_c$, so:

$$
\Phi_{el} = \frac{\sigma_c^2}{2E} V
$$

Unit energy of elastic strain Φ_{el} (for volume V=1 m³), given in (kJ) is called as P_{ES} *:*

$$
P_{ES} = \frac{1000\sigma_c^2}{2E} = 500\frac{\sigma_c^2}{E}
$$

AGH

Classification of rocks acc. to P_{ES}

Rockburst Index for the rockmass - W_{TG}

It utilizes full stress–strain characteristic for rock specimens and postfailure behawior of coal. The configuration roof – seam – floor is analyzed, taking into consideration 100 m section in the roof and 30 m in the floor. The index W_{TG} includes geomechanical parameter for rocks: Young modulus *Erock* for rock beds lying next to the coal seam and post-failure modulus *M^c* for coal.

$$
W_{TG} = \frac{M_{coal}}{E_{rock}}
$$

Erock - Young modulus for rock around seam **seam** and seam and sea *M^c -* post-failure modulus for coal

M. Bukowska, 2002 Strain

AGH

Rockburst Index for rockmass - W_{TG} **the classification**

EXPERIENCE: THE ROCKBURST HAPPENED FOR ROCKMASS NUMBER $L_a > 50$

For previous data:

$$
L_g = \frac{1}{2} \Big[(1.00 \cdot 5.9 + 0.62 \cdot 20.5 + 0.29 \cdot 64.4 + 0.31 \cdot 9.3) + \frac{100}{30} (1.00 \cdot 3.5 + 0.62 \cdot 4.1 + 0.29 \cdot 20.7 + 0.31 \cdot 1.8) \Big]
$$

= $\frac{1}{2} \Big[(5.9 + 12.7 + 18.7 + 2.9) + \frac{10}{3} (3.5 + 2.5 + 6.0 + 5.6) \Big] = \frac{1}{2} \Big(40.2 + \frac{10 \cdot 17.6}{3} \Big) = 49.44$

"*GEO***" system for rockburst proneness evaluation (after Bukowska)**

"*GEO***" system for rockburst proneness evaluation – the classification**

The analysis includes roof layers up to 100 m above a seam and floor layers up to 30 m below the seam. The range of "GEO" system is from 3 to 114 points.

Rockmass proneness to rockburst is described as follows:

Prediction of the places with stress concentration

AGH

Dymek solutions which used analysis of the deformation of the elastic half-space

Each mined and planned longwall panel is rectangle (dimensions 2*a* and 2*b*). The rock mass is isotropic and continuous. The state of displacement for each "i" rectangle area is calculated using following boundary conditions:

је против постављени се при селото на се
Селото на селото на

$$
w_i(x, y, z = 0) = \begin{cases} w_{oi} = const > 0 \\ 0 \end{cases} \qquad \qquad \begin{aligned} |x| \le a & i \quad |y| \le b \\ |x| > a & i \quad |x| > b \end{aligned}
$$

Components of the displacement:

$$
u_{1}(x,y,z) = \frac{-w_{oi}}{2\pi(3-4\nu)} \begin{bmatrix} \frac{z^{2}}{z^{2}+(x+a)^{2}} \left[\frac{y+b}{\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}} - \frac{y-b}{\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}} \right] - \frac{y-b}{\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}} \\ \frac{z^{2}}{z^{2}+(x+a)^{2}} \left[\frac{y+b}{\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}} - \frac{y-b}{\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}} \right] \end{bmatrix}
$$

$$
v_{1}(x,y,z) = \frac{-w_{oi}}{2\pi(3-4\nu)} \begin{bmatrix} \frac{z^{2}}{z^{2}+(y+b)^{2}} \left[\frac{x+a}{\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}} - \frac{x-a}{\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}} \right] - \frac{x-a}{\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}} \\ \frac{z^{2}}{z^{2}+(y-b)^{2}} \left[\frac{x+a}{\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}} - \frac{x-b}{\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}} \right] \end{bmatrix}
$$

Components of the displacement (cont.):

$$
w_i(x, y, z) = \frac{w_{oi}}{2\pi} \left\{ \frac{\left(x + a\right)\left(y + b\right)}{z\sqrt{\left(x + a\right)^2 + \left(y + b\right)^2 + z^2}} \right\} - \arctan\left(\frac{\left(x - a\right)\left(y + b\right)}{z\sqrt{\left(x - a\right)^2 + \left(y + b\right)^2 + z^2}} \right) + \frac{w_{oi}}{z\sqrt{\left(x - a\right)^2 + \left(y - b\right)^2 + z^2}} \right\}
$$

$$
+\frac{z}{3-4v}\left[\frac{(x+a)(y+b)}{(z^2+(x+a)^2)(z^2+(y+b)^2)}\sqrt{(x+a)^2+(y+b)^2+z^2}+\frac{z^2}{\sqrt{(x-a)^2+(y+b)^2+z^2}}+\frac{z}{\sqrt{(x-a)^2+(y+b)^2+z^2}}+\frac{z}{3-4v}\right]
$$

+
$$
\frac{z}{3-4v}\left[\frac{(x-a)(y-b)}{(z^2+(x-a)^2)(z^2+(y-b)^2)}\sqrt{(x-a)^2+(y-b)^2+z^2}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}+\frac{z^2}{\sqrt{(x+a)^2+(y-b)^2+z^2}}\right]
$$

Having the components of displacement vector $[u] = \{u, v, w\}$ from geometrical equtions we calculate components of the strain:

 $[\varepsilon] = {\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, \gamma_{xy}, \gamma_{yz}, \gamma_{xz}},$

Then, from Hooke's law we calculate elastic stress tensor:

$$
[\sigma] = {\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \tau_{xy}, \tau_{yz}, \tau_{xz}}
$$

The displacements change in time due to stress relaxation, so the stress tensor after time *toi* is amounted to:

$$
T_{\sigma}(t_{oi}) = \chi(\Delta t_{oi}) \cdot T_{\sigma}
$$

where

- **T (toi)** stress tensor in given point after time *toi* for *i* mined area ,
- T_{σ} stress tensor in time t = 0 for *i* mined area,
- Δt_{oi} time period between time of *i* area was mined and analysed time, - number of mined area,
- $\chi(\Delta t_{oi})$ factor of stress relaxation for *i* mined area.

AGH

For Silesia Coal Basin the best model for describing relaxation stress is according with Maxwell model. Factor of relaxation state of stress could be described as:

$$
\chi(\Delta t_{\rm oi})=e^{\frac{-G_M}{\eta_M}\Delta t_0}
$$

where:

 $\Delta t_{\rm ei}$ - time period beetwen time of *i* area was mined and analysed time

 G_M - rock mass modulus of elasticity for Maxwell model (usually: 1-7 GPa),

 η_M - rock mass viscosity of Maxwell model (usually: 10-70 GPa·s).

Vertical stress concentration factor is described as:

$$
\alpha = \frac{\sigma_z(x, y, z)}{p_z}
$$

where:

- σ _z (x,y,z) vertical stress in given point, MPa
- p_z vertical primary stress in given point, MPa.

Depending on the value of vertical stress concentration factor α , the stress concentration zones in the rockmass can be identify, **Vertical stress concentration factor**
Depending on the value of vertical stress concentration factor α , the stress
concentration zones in the rockmass can be identify,
where $\alpha \le 1.0$ shows released zone,
and $\alpha > 1.$

where $\alpha \le 1.0$ shows released zone,

- $\triangleright \alpha \leq 1.0$ released zone
- $\geq 1.0 < \alpha \leq 1.5$ zone of low stress concentration:
- $\geq 1.5 < \alpha \leq 2.0$ zone of medium stress concentration
- $\geq 2.0 < \alpha \leq 3.0$ zone of high stress concentration
- \triangleright α > 3,0 zone of very high stress concentration

Prediction:

Maximum value of mining tremors: 7*10⁷ J,

very seldom in the areas next to the mining edges of above mined seam – 4*10⁸ J

The estimation of the influence of mining tremors on the surface

Ground acceleration on surface

If we register the maximum value of seismic energy, we can calculate the component of the **horizontal acceleration** of vibration on surface:

$$
\log a = a_1 \log E + a_2 \log R + a_3 + \varepsilon
$$

where:

a – maximum component of the horizontal acceleration of vibration on surface $[m/s^2]$,

- *E* energy of mining tremor [J],
- *R* hypocenter distance [m],

$$
R = \sqrt{r^2 + h^2}
$$

- *r* epicentral distance [m],
- *h* average depth of tremors in analysed area [m],
- *aⁱ* parameters of model regresion,
- ε random component.

The similar relationship we can show for horizontal velocity of ground particles

THE SCALE OF MINING TREMORS IMPACT ON THE SURFACE IN THE UPPER SILESIA COAL BASIN – POLAND for velocity AGH

THE SCALE OF MINING TREMORS IMPACT ON THE SURFACE IN THE UPPER SILESIA COAL BASIN – POLAND for accelerations

AGH

Definitions of intensity levels:

Level 0

Tremors causing no damage in buildings. Vibrations not felt by people or slightly felt by people.

Level I

Tremors not causing damage to buildings. Open windows and doors may get closed without man's action. Furniture may vibrate and hanging objects may swing. In single cases existing cracks or fissures may get larger. Tremors may be strongly perceptible at the surface, especially on high storeys.

Definitions of intensity levels:

Level II

In this zone consequences described in level I may occur and vibrations capable of causing increase of the existing damage, i.e.: lengthening existing cracks and fissures, falling off small fragments of loosened inside and outside plaster, etc., in at most 5% of population of buildings covered by this level of intensity. Furniture may vibrate and hanging objects may swing. Tremors may be strongly perceptible at the surface, as in the buildings as outdoors. Observers feel a strong shaking or racking of the whole building.

Level III

Level III is weakly documented with measurement data and empirical experiments. In this zone there may occur consequences included in the description of level II and vibrations that may cause first damage to nonload-bearing elements of buildings, i.e.: cracks of inside and outside plaster, slight cracks of glazed tiles, slight cracks around the frames of windows and doors, loosening bricks of brick chimneys etc., in at most 5% of population of buildings. Furniture may be shifted. Slight damage possessions is possible. Vibrations of this intensity may wake sleeping people up. Many people get frightened during these vibrations. A few persons lose their balance, especially on upper floors.

MSIIS-15 – verification results in Polish part of Upper Silesia

Figure 3: Results of verification MSIIS-15 scale on the basis of seismic and macroseismic observation from Upper Silesia Coal Basin - Poland

Prediction of ground particles velocity caused by mining seismisity on surface acc. GSI scale [m/s]

Prediction of ground particles acceleration caused by mining seismisity on surface acc. GSI scale [m/s2]

