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A B S T R A C T

Mine induced seismic events are a major safety concern in mining and require careful monitoring and man
agement to reduce their effects. Therefore, an essential step in assessing seismic and rock burst hazards is the 
analysis of mine seismicity. Recently, deep neural networks have been used to automatically determine seismic 
wave arrival times, surpassing human performance and allowing their use in seismic data analysis such as seismic 
event location and seismic energy calculation. In order to properly automate the rockburst and seismic hazard 
assessment deep neural network phase picker and a spatio-temporal clustering method were utilized. Seismic and 
rockburst hazards were statistically quantified using two-way contingency tables for two categorical variables: 
seismic energy level of mine tremors and number of clusters. Correlations between several spatio-temporal 
clusters and a statistical association between two categorical variables: seismic energy level and cluster num
ber indicate an increase of seismic hazard in the Marcel hard coal mine in Poland. A new automated tool has been 
elaborated to automatically identify high-stress areas in mines in the form of spatio-temporal clusters.

1. Introduction

Mining induced seismicity refers to earthquakes that are caused by 
mining activities, specifically activities like extracting coal and ore in 
underground mines. These seismic events can cause significant damage 
to the mine and surrounding areas resulting in rock-bursts, which are 
sudden, violent releases of energy within the mine that can cause major 
structural damage, (Bai et al., 2022; Niu et al., 2022; Zhou et al., 2021; 
Cai et al., 2019; Gong et al., 2019). The occurrence of mining induced 
seismicity is a major safety concern in the mining industry and requires 
careful monitoring and management to minimize its impact, (Shuai 
et al., 2023). Moreover, to assess the seismic and rockburst hazard, it is 
important to analyze the seismicity caused by mining, (Cao et al., 2020; 
Mutke et al., 2015; Orlecka-Sikora et al., 2012; Riemer and Durrheim, 
2012; Kwiatek et al., 2010).

One of the most time consuming and indispensable steps in the 
analysis of mining seismic events is the determination of arrival times of 
seismic waves. This step is most often performed manually because the 
existing automatic algorithms provides very erroneous results and 
further analysis of mining seismicity such as location and seismic energy 
calculation requires high quality arrival times of seismic waves. Only 

recently have deep neural networks begun to be used for automatic 
determination of arrival times of seismic waves, outperforming human 
performance, (Johnson et al., 2021; Zhu et al., 2021; Mousavi et al., 
2020; Chai et al., 2020; Wang et al., 2019; Zhu et al., 2019; Ross et al., 
2018) and allowing their use in seismic data analysis such as seismic 
event location and seismic energy calculation.

Deep neural networks (DNNs) have been increasingly used in seis
mology to improve the accuracy of seismic data processing, event 
detection, classification, fault recognition and earthquake forecasting, 
(Liu and Chen, 2023; Mao et al., 2023; Xu et al., 2023; Ding et al., 2022; 
Ma et al., 2022; Niu et al., 2022; Pu, et al., 2020, 2022; Wang and Tang, 
2022; Woollam et al., 2022; Xu et al., 2022; Zou et al., 2022; An et al., 
2021; Duan et al., 2021; Wang et al., 2021; Wilkins et al., 2020; Geng 
et al., 2019), as well as in geotechnical underground engineering (Zhang 
and Phoon, 2022; He et al., 2019; Sun et al., 2019). DNNs are a type of 
artificial neural network that can learn complex features and relation
ships from data through multiple layers of nonlinear transformations. 
DNNs have been applied to various tasks in seismology, including 
seismic waveform processing to denoise and filter seismic waveforms, 
seismic event detection and classification to detect and classify different 
types of seismic events, such as earthquakes, explosions, and tremors. 
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DNNs can also be used to distinguish between natural and induced 
seismicity, and to identify seismic events that are associated with spe
cific geological structures and processes. DNNs can be used to predict 
the likelihood and magnitude of future earthquakes and to identify 
seismic precursors, which are signals that precede a major earthquake 
and may provide early warning. DNNs have several advantages over 
traditional methods in seismology, including their ability to handle large 
volumes of data, learn complex patterns and relationships, and adapt to 
changing conditions. However, DNNs also require large amounts of data 
and computing resources, and their results can be difficult to interpret. 
Therefore, it is important to carefully validate and evaluate the perfor
mance of DNN models in seismology.

In mining seismology, clustering methods are used to identify pat
terns of seismic activity that may be related to mining operations. These 
methods can help identify regions of the mine that are at risk of seismic 
activity, and can inform decisions about mine design, blasting practices, 
and other safety measures, (Liu et al., 2023). There are various methods 
used for clustering mining seismic events. These methods are used to 
group mining earthquakes that occur closely in time and space. Some 
common clustering methods are as follows. The hierarchical clustering 
method is commonly used in seismicity analysis, including the study of 
seismic events in underground mines. It involves creating a dendrogram, 
which is a tree-like structure that shows the relationship between 
seismic events based on their similarity in space and time, (Lurka, 2021; 
Hudyma, 2008). K-means clustering is a statistical method that groups 
mining tremors based on their similarity in space. The method involves 
selecting a number of clusters and assigning each mining earthquake to a 
cluster based on its proximity to the cluster centroid, (Meyer et al., 2019; 
Leśniak and Isakow, 2009). Density-based clustering involves identi
fying areas of high seismicity density and grouping seismic events that 
occur within these areas, (Woodward et al., 2018).

The seismicity observed in underground mines is indeed influenced 
by various factors, including faults, dikes, pillars, rock characteristic, 
and spatial distribution of mine workings. In underground hard coal 
mines, a continuous cloud of seismicity often arises from mining- 
induced seismic events, (Wang et al., 2015). To analyze and 

understand such continuous seismicity, the spatiotemporal hierarchical 
clustering method proposed by Lurka (2021) can be effectively applied. 
This method involves grouping seismic events based on their spatial and 
temporal characteristics, allowing identification of patterns and re
lationships within the seismic data. The spatiotemporal hierarchical 
clustering method considers both the locations and timings of seismic 
events to identify clusters or groups of events that are closely related in 
space and time. This approach is particularly useful for longwall mining 
systems where a continuous cloud of seismicity is observed.

We propose in this study a novel algorithm that utilizes a deep neural 
network phase picker and a spatio-temporal clustering method to 
automate the assessment of rockburst and seismic hazard in the Marcel 
hard coal mine in Poland. The seismic and rockburst hazard is quantified 
statistically by utilizing two way contingency tables for two categorical 
variables: seismic energy level of mining tremors and cluster number. 
Thus, we have developed a new tool that enables automatic identifica
tion of high-stress areas in mines prone to high energy seismic activity. 
The novelty of our approach is twofold. First, categorical data analysis 
was used for the first time to assess seismic and rockburst hazard. Sec
ondly, a heuristic algorithm was proposed that automates the seismic 
and rockburst hazard assessment process using deep learning, spatio- 
temporal clustering and categorical data analysis.

2. Materials and methods

We have analyzed in this study the seismic data from the Marcel coal 
mine, Upper Silesia, Poland in the area of the coal panel C-4/505, Fig. 1. 
Our experiment involved application of several consecutive methods: 
the deep convolutional neural PhaseNet model, (Zhu et al., 2019), 
seismic event location and seismic energy calculation, hierarchical 
cluster analysis with spatio-temporal metric, (Lurka, 2021) and cate
gorical data analysis, (Agresti, 2012). Therefore, we have designed a 
workflow which takes advantage of these methods and show the in
terrelations between them, Fig. 2. The analyzed area, seismic data and 
each of the utilized methods are shortly described in the following 
paragraphs.

Fig. 1. a) Marcel hard coal mine in Upper Silesia, Poland is the most seismically active mining site in Europe; shown as the black area. b) Area of the coal panel C-4/ 
505 in the Marcel coal mine. Recorded seismicity shown as blue circles and seismic stations as black triangles; rockburst marked as large red star; red arrow denotes 
coal face direction.
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2.1. Materials

The SOS seismic monitoring system was installed in the Marcel coal 
mine in Upper Silesia, Poland, at the beginning of 2000 consisting of 20 
uniaxial velocity sensors with a natural frequency of 1Hz. The seismic 
sensors are located at the depth between 600 and 1000 m below the 
surface encompassing roughly the area 6 km in NW direction by 7 km in 
SN direction. The seismic network is centered around safety pillar where 
analyzed coal panel C-4/505 is located, Fig. 1b.

Four seismic stations were strategically positioned near the coal 
panel C-4/505, as illustrated in Fig. 1b. Additionally, sixteen other sta
tions were placed at distances ranging from 2 to 6 km apart. The seismic 
event locations were determined by analyzing the first arrivals of the 
seismic longitudinal P wave. This process involved minimizing the 
arrival time residuals using the L1 norm and the Simplex iterative al
gorithm, as described by Prugger and Gendzwill (1988) and Press et al. 
(2007). To facilitate the location procedure, a uniform velocity model 
equal to 4050 m/s was utilized. This model was derived from under
ground blasting. The estimated location error of mining tremors varied 
from 10 to 30 m for XY coordinates and from 110 to 180 m for vertical Z 
coordinate. The formula we used for quantifying the location errors of 
mining-induced seismicity involved calculating the uncertainty in the 
measured coordinates X, Y and Z of a seismic event in the form of 
covariance matrix and taking the square roots of diagonal elements as 
standard error estimates of the corresponding coordinates, Thurber and 
Engdahl (2000). It is important to note that the accuracy of the seismic 
event locations depended on the several factors: network geometry, 
velocity model inaccuracies, signal to noise ratio and number of P wave 
onset times. For mining-related tremors, the locations were determined 

based on the onset times of the seismic P wave, which were picked at a 
minimum six seismic stations.

The underground microseismic system in the Marcel mine is oper
ating continuously with a sampling rate of 500 samples per second, and 
its internal clock is synchronized by GPS with very high accuracy.

We have analyzed the data set encompassing the foreshock and 
aftershock sequence of the seismic event with the highest observed en
ergy E = 2*107[J] (magnitude M = 2.9) that occurred on February 8, 
2019 and caused rockburst, Fig. 1b. The occurrence of the highest 
observed energy mining tremor serves as a valuable reference point for 
evaluating the stress changes both in space and time.

The preprocessing of seismic data before analysis is a crucial step in 
improving data quality and preparation for other tasks, such as locating 
seismic events and calculating seismic energy. We conducted noise 
reduction as the procedure to distinguish seismic signals from unwanted 
noise not related to any mining induced seismic events. To eliminate 
noisy data, we used a Butterworth bandpass filter in the frequency range 
from 1 Hz to 200 Hz.

Throughout the analyzed timeframe, a total of 5544 mining tremors 
were documented, out of which 2551 tremors exhibited energies 
ranging from 102[J]-103[J] (magnitudes 0.1–0.6), 2359 tremors with 
energies 103[J]-104[J] (magnitudes 0.6–1.2), 523 tremors with energies 
104[J]-105[J] (magnitudes 1.2–1.7), 95 tremors with energies 105[J]- 
106[J] (magnitudes 1.7–2.2), 15 tremors with energies 106 [J]-107[J] 
(magnitudes 2.2–2.7) and one tremor having energy E = 2*107[J] 
(magnitude M = 2.9), Fig. 3. The spatial distribution of microseismic 
events and recorded rockburst of Marcel mine are shown in Fig. 1b.

2.2. Methods

2.2.1. Automatic determination of the arrival times of seismic P-waves with 
the use of the deep neural network model PhaseNet

PhaseNet is a deep learning model developed for the automatic 
detection and picking of seismic phases, which are the arrival times of 
different types of seismic waves that are produced during an earthquake. 
These arrival times can be used to estimate the earthquake’s location 
and magnitude. PhaseNet was developed by the seismology team at the 
Stanford University, Zhu& Beroza (2019), and it uses a deep convolu
tional neural network (CNN) architecture to analyze the raw seismic 
data and predict the arrival times of different seismic phases. The model 

Fig. 2. A flowchart of automatic seismic and rockburst hazard assessment using 
a deep neural network model, spatio-temporal clustering and categorical 
data analysis.

Fig. 3. A histogram depicting the seismic energies of mining tremors observed 
in Marcel mine during the period from November 1, 2017, to January 30, 2021. 
The dataset consisted of a total of 5544 recorded seismic events. The horizontal 
axis represents the seismic energy intervals measured in joules, while the ver
tical axis represents the number of seismic events falling within each en
ergy interval.
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was trained on a large dataset of about 1 million seismograms, which are 
recordings of ground motion produced by earthquakes, and it was able 
to achieve high accuracy in detecting seismic phases. The main advan
tage of PhaseNet is that it can accurately detect seismic phases even in 
noisy data, which is a common problem in seismology. This makes it a 
very valuable tool for seismicity monitoring and early warning systems.

The architecture of PhaseNet is based on U-Net model, 
(Ronnenberger et al., 2015) and the inputs the seismograms of recorded 
seismic events. The output of PhaseNet deep neural network is the 
probabilities of P and S wave onset times, but we have used P wave 
arrivals only due to the fact that S wave arrivals can be overlapped with 
other types of wave such as seismic scattered or coda waves. Therefore S 
wave onset times have inherently larger errors and are much more 
difficult to determine by automatic methods, (Zhu et al., 2019). The 
input seismic data pass through the down sampling process consisting of 
several convolution and rectified linear functions and up sampling 
process consisting of several deconvolution and rectified linear func
tions, (Zhu et al., 2019), which has been symbolically shown in Fig. 4.

2.2.2. Seismic event location and seismic energy calculation of mining 
tremors

After automatic determination of the arrival time of seismic P-waves 
utilizing the deep neural network model we have performed the location 
and seismic energy calculation of the analyzed mining induced 
seismicity.

2.2.2.1. Mining tremors location procedure. The location of a mining 
tremor is determined by analyzing arrival times of seismic P-waves. 
Location methods based on the arrivals times are closely related to the 
problem of minima determination of the function of several variables 
called objective function. We have utilized the time difference between 
the measured and theoretical arrival time of the seismic longitudinal P- 
wave and the L1 norm of the objective function, (Prugger&Gendzwill, 
1988): 

F
(
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=
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where:
x0,y0,z0 – the unknown seismic event coordinates [m],
t0 – the unknown origin time of the seismic event [s],
xi,yi,zi - coordinates of the seismic station no. “i”[m[],

n – total number of seismic stations,
ti – arrival time of seismic P wave at the station number “i”, deter

mined by utilizing the deep neural network model PhaseNet [s]
VP – P wave velocity model of the rock mass, assumed constant and 

equal to 4050 m/s determined from blast seismograms[m/s].
The objective function is minimized using Simplex iterative method, 

which update the location estimate iteratively until a minimum is 
reached, (Prugger&Gendzwill, 1988).

2.2.3. Seismic energy calculation of mining tremors
We have used ground motion velocity seismograms of mining 

induced seismicity to calculate the radiated energy of seismic P and S 
waves and then used its sum as the estimate of total radiated seismic 
energy of mining tremor. To obtain the seismic energy of S waves we 
first calculated the arrival times of seismic S wave at each seismic sta
tion. The method we have used is based on time integration of the 
squared ground velocity seismograms corrected for attenuation func
tion, (Kanamori et al., 1993): 

EP(S) =4πr2[r0q(r0)/rq(r)]2ρ0βP(S)

∫

v2(t)dt (2) 

where:
ρ0- density of the medium [kg/m3],
βP(S)- seismic P(S) wave velocity of the medium [m/s],
r – distance to the selected seismic station [m],
r0 - distance to the focal sphere [m],
q(r) =

exp(− αr)
r - attenuation function [1/m],

α- attenuation coefficient equal to 0.002 both for P and S waves [1/ 
m].

2.2.4. Hierarchical clustering of mining seismicity
We have applied the agglomerative hierarchical clustering approach 

to perform spatio-temporal clustering on the mining seismic events 
recorded at the Marcel coal mine, shown in Fig. 1b. This clustering 
method is widely recognized and extensively used in various applica
tions, (Lurka, 2021; Jain et al., 1999). The clustering procedure com
mences with a set of clusters, each initially composed of a single seismic 
event. As the procedure progresses, these clusters are gradually merged 
together, forming a hierarchical structure of clusters. This structure is 
commonly represented as a dendrogram, (Aggarwal&Reddy, 2014).

In the context of mining tremors, spatial (X,Y) and temporal (T) 
coordinates were introduced. These coordinates are used to describe the 
location and timing of seismic events within the mining area. The spatial 
coordinates refer to the physical position of the seismic events in the 
mining region, typically represented using Cartesian coordinates. On the 
other hand, the temporal coordinates refer to the time at which each 
seismic event occurs, usually represented as a timestamp or time inter
val. By incorporating both spatial and temporal coordinates, a 
comprehensive understanding of the distribution and timing of mining- 
induced seismicity can be obtained. We have omitted the vertical Z 
coordinate from our analysis due to large location errors of this 
component what would cause problems with obtaining reliable clus
tering results.

In order to examine mining seismicity comprehensively, considering 
both spatial and temporal aspects, we employ the following metric 
representing distance between two points in space and time, (Lurka, 
2021): 
⃦
⃦
⃦pi − qj

⃦
⃦
⃦

2
=
(

pix − qjx

)2
+
(

piy − qjy

)2
+ c2

(
pit − qjt

)2
(3) 

where:

pi =
(

pix, piy, pit

)
- spatio-temporal coordinates of mining seismic 

event number “i”,

qj =
(

qjx, qjy, qjt

)
- spatio-temporal coordinates of mining seismic 

Fig. 4. The outline of the Convolutional Deep Neural Network PhaseNet ar
chitecture used in the analysis of the recorded seismograms for mining seismic 
events in Marcel mine. See Zhu et al. (2019) for more details.
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event number “j”, 

c2 =
V(X) + V(Y)

V(T)
(4) 

V(X), V(Y), V(T) – variances of the analyzed coordinates,
⃦
⃦
⃦pi − qj

⃦
⃦
⃦

2
- the distance between two seismic events with coordinates 

pi and qj respectively.

2.2.5. Categorical data analysis of recorded seismicity
Categorical data analysis is a statistical method used to analyze data 

that is nominal or ordinal in nature, meaning it consists of categories or 
groups rather than numerical values. If the response and explanatory 
statistical variables are both categorical then the common approach is 
the construction of contingency tables, (Agresti, 2012). Two way con
tingency tables are often used in social science research, but can also be 
applied in other fields such as medicine, epidemiology, and engineering. 
A contingency table, also known as a cross-tabulation table or a two-way 
table, displays the frequency distribution of two categorical variables. 
Each variable is displayed as a row or column in the table, and the 
intersection of the row and column represents the frequency of cases 
that have both values.

In mining sciences and in particular in seismology, categorical data 
analysis can be used to analyze seismic data that is classified into 
different categories, such as earthquake magnitude, seismic energy, 
earthquake type, seismic intensity, or earthquake location. One common 
application of categorical data analysis in seismology is the study of 
earthquake magnitude distributions. Earthquake magnitudes or seismic 
energies can be typically classified into different categories, such as 
"small" "moderate" or "large". In such cases categorical data analysis can 
be used to examine the frequency of seismic events in each category. We 
have adopted this approach in our analysis of mining seismic data from 
Marcel coal mine i.e. the classification of mining seismic events into 
categories based on their energy.

Based on contingency tables with N rows and M columns we have 
calculated the chi-square statistics, which measures the independence of 
two categorical variables according to the following formula: 

χ2 =
∑N

i=1

∑M

j=1

(
nij − μij

)2

μij
(5) 

where:
χ2– Pearson chi-squared statistic of the contingency table
nij – observed frequency of row number “i” and column number “j” in 

contingency table
μij – estimated expected frequency of row number “i” and column 

number “j” in contingency table
The statistical test utilizing chi-square statistics allowed us to answer 

the question if there is any association between two categorical vari
ables. The smaller the p-value of chi-square test the stronger the evi
dence of the association. However, to obtain a measure of how strong is 
the association between two categorical variables we have calculated 
two coefficients:

the contingency coefficient 

C=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
χ2

χ2 + NO

√

(6) 

and the Cramer’s V coefficient 

V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
χ2

NO(N − 1)

√

(7) 

where:
NO –total number of observations.

The disadvantage of the C contingency coefficient is that it does not 
reach a maximum of 1.0 and therefore cannot be used to compare as
sociations in different contingency tables. The Cramer V coefficient 
varies from 0, corresponding to no association between categorical 
variables, to 1, corresponding to complete association.

Contingency tables can also be used for understanding the relation
ship between two categorical variables, and help identify patterns or 
trends in our seismic data. To achieve this we have utilized the stan
dardized residuals for cell in row “i” and column “j” of chi-square 
statistics: 

eij =

(
nij − μij

)2

μij
(8) 

The standardized residuals allowed us to highlight those cells in 
contingency tables that are more likely or less likely to occur than ex
pected values under the independence assumption.

3. Results and discussion

Before we discuss the results, it is necessary to explain what is meant 
by seismic hazard and what is meant by rockburst hazard. In order to 
define these two concepts, it is first necessary to provide the definitions 
of mining-induced seismic event and rockburst.

A mining-induced seismic event refers to an earthquake that is 
directly caused by mining operations. These seismic events are typically 
a result of the stress fields changes in the rockmass due to the excavation 
which can activate existing faults, create new fractures. In cases where 
mining seismic event cause damage to underground workings, the 
seismic event is referred to as rockburst.

A seismic hazard refers to the probability or likelihood of an area 
being affected by seismic activity. It encompasses the potential ground 
shaking intensity, occurrence frequency and seismic energy distribution. 
This assessment helps in preparing management plans that can with
stand or minimize potential damages caused by mining induced seis
micity. A rockburst hazard refers to the potential risk of experiencing a 
rockburst in underground mining. This hazard is characterized by the 
likelihood of sudden and violent ejections of rock from the walls, roof, or 
floor of an excavation due to high stress concentrations in the rock. It 
follows that rock burst hazard is a very small subset of seismic hazard.

The presented discussion of the results includes a combined analysis 
of seismic and rockburst hazards based on the heuristic algorithm pre
sented in the previous sections. This algorithm should be treated as a 
completely new indicator assessing seismic hazard based on categorical 
data analysis, having no equivalents among other methods assessing 
seismic and rockburst hazards. Therefore, it cannot be compared with 
other seismic hazard indicators.

3.1. Deep learning PhaseNet model analysis

According to the workflow in Fig. 2, in the first step, we have 
analyzed around one hundred thousand velocity seismograms recorded 
during our seismic monitoring campaign in Marcel coal mine as time 
series inputs to the PhaseNet deep neural network model, (Zhu et al., 
2019). The duration of each of the analyzed velocity seismograms was 
about 13 s with sampling rate 0.002 miliseconds, Figs. 5–7. Originally 
the inputs of the PhaseNet model are three-components seismograms of 
recorded seismic events and outputs are probability distributions of P 
wave onset times, (Zhu et al., 2019). In our case the seismic monitoring 
system installed in the Marcel mine consisted of uniaxial sensors. 
Therefore we used three identical copies of one component seismograms 
recorded by these uniaxial sensors because three inputs to the PhaseNet 
model were required. Additionally, we used around 10% of the seis
mograms with manually picked P wave onset times to retrain the Pha
seNet model and obtain better quality of the results. After retraining the 
PhaseNet model we have not found any improvement in the quality of 
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the P wave picks determination compared with the original PhaseNet 
model results, most probably due to the fact that original PhaseNet 
model, trained on around one million velocity seismograms collected 
over a period of about 30 years, determined P wave onset times with 
very high accuracy outperforming in many cases P wave onset times 

obtained by human expert, Figs. 5–7. The analysis and determination of 
P wave onset times with the use of PhaseNet model on 100000 velocity 
seismograms took less than 10 min on regular PC computer, whereas the 
thorough analysis of the same number of velocity seismograms by 
experienced human expert would take a couple of months, clearly 

Fig. 5. Examples of picks of seismic P wave onset times in the analyzed data set with very small differences between manual picks determined by an expert (Pm) and 
picks determined by Deep Convolutional Neural Network PhaseNet (P). Left: seismograms shown in a long time window; Right: seismograms shown in a short 
time window.
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showing the huge breakthrough in this research area.
Fig. 5 presents comparison of seismic P wave onset times of the 

analyzed velocity seismograms from Marcel mine recorded in coal panel 
C-4/505 determined by an human expert (Pm) and determined by Deep 
Convolutional Neural Network PhaseNet model with very small 

differences between them of the order of a few milliseconds. The onset 
time of the PhaseNet model is determined as the maximum on the pre
sented P wave probability distribution. Fig. 6 depicts the comparison of 
seismic P wave onset times of the analyzed velocity seismograms 
determined by a human expert (Pm) and determined by the PhaseNet 

Fig. 6. Examples of picks of seismic P wave onset times in the analyzed data set with small differences between manual picks determined by an expert (Pm) and picks 
determined by Deep Convolutional Neural Network PhaseNet (P). Left: seismograms shown in a long time window; Right: seismograms shown in a short 
time window.
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model with differences between them of the order of tens of millisec
onds. It is clearly visible that seismic noise of these seismograms is 
significantly higher and the onset times determined by PhaseNet model 
are more related to the beginning of the phase of seismic P wave. 
Likewise, Fig. 7 shows comparison of seismic P wave onset times of the 

analyzed velocity seismograms determined by PhaseNet model only 
where human expert was not able to determine the picks. We can easily 
see that seismic noise of these seismograms is significantly higher than 
in two previous cases and that the two bottom seismograms in this figure 
contain slowly varying seismic noise, making it very difficult to analyze 

Fig. 7. Examples of picks of seismic P wave onset times in the analyzed data set with high seismic noise and picks determined by Deep Convolutional Neural Network 
PhaseNet (P) only. Left: seismograms shown in a long time window; Right: seismograms shown in a short time window.
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by an expert. However, the PhaseNet model provided reliable results 
that we verified after more detailed and time-consuming analysis of 
seismograms.

Overall, the quality of the obtained onset times of seismic P wave 
utilizing deep neural network PhaseNet model is in most analyzed cases 
the same or better than human expert. It should be emphasized, how
ever, that the assessment of the quality of determined onset times of 
seismic P wave is partly subjective, as it was carried out by the authors of 
this work. Summarizing these results, Fig. 8 shows the distribution of 
residuals Dt i.e. difference between onset times of seismic P wave 
determined by Convolutional Deep Neural Network and human expert. 
Most of the residuals Dt are in the range between − 20 and 20 ms con
firming indirectly high quality results obtained by PhaseNet model.

All P wave onset times automatically determined by the PhaseNet 
deep neural network were used to automatically calculate 5544 seismic 
event locations using formula (1), Fig. 1b, and then to calculate their 
corresponding seismic energies using formula (2), Fig. 3. Around 10% of 
the 5544 seismic event locations and seismic energies were calculated 
with manual picks. It is important to emphasize that a constant velocity 
model was used for seismic event locations and its approximate nature 
could lead to source location errors. For this reason, corrections are 
sometimes made to onset time of seismic P wave to account for these 
errors. However, this approach hides the fact of heterogeneity in the 
seismic velocity model and was not considered as a possibility of further 
tuning the deep neural network to the empirical data.

3.2. Hierarchical spatio-temporal cluster analysis

In the cluster grouping of mining seismicity in Marcel coal mine, we 
have employed the hierarchical algorithm with a spatio-temporal 
metric, (Lurka, 2021). However, due to large location errors in the Z 
coordinate of mining seismic events, the spatio-temporal clustering was 
conducted using only the horizontal, XY coordinates. Therefore, we have 
implicitly assumed that all analyzed seismic events are projected onto a 
horizontal plane at the current mining level. This assumption is 
acceptable for seismic hazard analysis if coal production is conducted at 
one horizontal mining level and seismic activity is related to it, Cai et al. 
(2014).

In the first stage, we have created the dendrogram of spatio-temporal 
clustering, Fig. 9 what helped us to form group of clusters with similar 
spatial and temporal coordinates. For our analysis, as a rule of thumb, 
we made the assumption that the top 20 clusters would be studied and 
that most of the clusters consist of more than 100 mining tremors, as 
indicated in Table 1 and Figs. 10–11 so as to obtain a representative 
sample for statistical calculations.

The clustering technique generates the succeeding cluster groups 
based on their spatial and temporal characteristics: 
(1,2,17,4,3,20,15,16) – group I, (13,14,19) – group II, (9,10,8,7) – group 
III, (18,6,5,12,11) – group IV, Fig. 9. The rockburst depicted in Fig. 1b is 
identified as part of Group IV within Cluster 12 through spatio-temporal 
clustering. The analysis reveals that mining tremors have been suc
cessfully separated in terms of spatial and temporal coordinates, as 
shown in Figs. 10 and 11. This demonstrates the efficacy of our clus
tering approach resulting in the formation of cohesive clusters for 
seismic sources generated continuously during longwall mining opera
tions, Fig. 1b and our study presents essential properties of our clus
tering procedure. These properties include the number of mining 
tremors, the centroid X, Y and T coordinates representing the spatial and 
temporal location and the duration of the cluster in days. Furthermore, 
the distribution of mining tremors depicted in Fig. 10 highlights in
terrelations among clusters associated with the rockburst: 5 → 6 → 12 → 
19 → 7 → 2 → 1.

The term interrelation in our analysis means consecutive occurrence 
and close proximity in space and time. We have purposely omitted the 
cluster 11 in this correlation because it has a strong spatial and temporal 
correlation with cluster 12 and assumed that cluster 11 is part of cluster 
12 in our analysis.

3.3. Categorical data analysis

We have started our categorical data analysis by introducing Seismic 
Energy Levels (SEL) dividing all recorded mining seismic events into 4 
categories shown in Table 2. These 4 categories are related to rockburst 
and seismic hazard due to the simple fact that the more seismic events 
belong to higher Seismic Energy Level category the higher seismic and 
rockburst hazard, but this statement is only qualitative and quantitative 
analysis of this dependence is presented in this paragraph that reveals 
associations between Seismic Energy Level and Cluster Number cate
gorical variables. Having these energy levels assigned for each analyzed 
seismic event, we were able to calculate a two way contingency table 
where the response variable is the cluster number of the performed 
spatio-temporal clustering and the explanatory variable is Seismic En
ergy Level. The analyzed contingency table has been presented in Fig. 12
where Seismic Energy Levels were shown in rows and cluster numbers in 
columns. Each element in the analyzed contingency table is named a 
cell. Graphical representation of cells in Fig. 12 contains a filled circle 

Fig. 8. The distribution of residuals Dt i.e. the difference between phase picks 
of seismic P wave arrival time determined by the convolutional deep neural 
network and the human expert of the recorded seismograms for mining seismic 
events in the Marcel mine.

Fig. 9. The dendrogram of the clustering of mining tremors from Marcel mine, 
Poland. On the horizontal axis, the cluster numbers are displayed, while the 
vertical axis represents Ward’s distance.
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whose size reflects magnitude of the frequency (or simply the number of 
seismic events) of Seismic Energy Level for the specific spatio-temporal 
cluster of mining induced seismicity. Based on this information, one can 
easily notice that clusters number: 8, 15, 16, 17 and 18 include the 
largest number of seismic tremors with VeryHigh category of the Seismic 
Energy Level, while clusters number 6 and 20 include the largest number 
of seismic tremors with Low category of Seismic Energy Level.

One of the most important questions related to our contingency table 
is if it reveals any associations between two analyzed categorical vari
ables i.e. if certain values of Seismic Energy Level variable tend to go 
with certain values of Cluster Number variable. Additionally we would 
like to determine how strong the association is, assuming it exists. 
Therefore, we performed the statistical test of independence of these 
variables based on formula (5) i.e. we performed statistical chi-squared 
test of independence with null hypothesis stating that: the two analyzed 
variables are statistically independent. We obtained the following values 
of the test: X-squared value equal to 10056, degrees of freedom df = 57 
and p-value <2.2e-16. The obtained p-value is very small, which clearly 
indicates that it is very unlikely that the null hypothesis is true and 
should be rejected and implies that Seismic Energy Level and Cluster 
Number are associated. Therefore, we have also calculated two mea
sures of association: contingency coefficient, formula (6), equal to 0.803 
and Cramer’s V coefficient, formula (7) equal 0.778 showing that the 
analyzed association is quite strong.

The results above strongly support our assumption on statistical 
dependence between Seismic Energy Level and Cluster Number, but do 
not reveal which cells in the analyzed contingency table have the largest 
influence on the observed association. Therefore we have calculated the 
standardized residuals of the Pearson chi-squared statistic, formula (8), 
and obtained a graphical matrix where each cell contains a filled circle 
whose size reflects magnitude of the standardized residuals for our 
contingency table, Fig. 13. Basing on this graphical matrix we can infer 
about the nature of dependence of each specific cell, (Agresti, 2012). 
The greater the absolute value of the cell’s standardized residual, the 
greater its influence on the dependence between the two categorical 
variables being analyzed. The rule of thumb indicates that the stan
dardized residuals that exceed 2 or 3 should have a significant influence 
on the dependence between variables, (Agresti, 2012).

The above analysis allows us to conduct the following reasoning. We 
have find in the spatio-temporal cluster analysis section that the 
following clusters were interrelated: 5 → 6 → 12 → 19 → 7 → 2 → 1 
where the rockburst was included into the cluster number 12. By 
comparing the magnitude of standard residuals in the above clusters, it 

can be noticed that clusters 5 and 6 have had the values greater than 2 in 
their corresponding cells indicating that they contributed significantly 
to the dependence between two analyzed categorical variables whereas 
clusters 19 and 7 contributed very little to this dependence. We can 
additionally assume that seismic and rockburst hazard was higher before 
the occurrence of the rockburst i.e. in clusters 5 and 6 and lower after the 
occurrence of rockburst i.e. in clusters 19 and 7. This suggests that 
seismic and rockburst hazard is significantly higher in clusters where we 
observe a strong association between Seismic Energy Level and Cluster 
Number.

At the end of the analysis performed, it should be emphasized that 
the specific location of the rockburst did not have a decisive impact on 
the results obtained. The proposed cluster and categorical data analysis 
consisted in examining the strength of the association between clusters 
and seismic energy levels, which is the essence of the proposed meth
odology for research on seismic and rock bursts hazards.

Finally, it is also necessary to mention the limitations of the meth
odology introduced and possible further research on this issue. The new 
computational method that was used to automatically assess rock burst 
and seismic hazards in the Marcel hard coal mine in Poland should be 
verified in different geological and technical mining conditions in 
several other mines. In mines with highly complex geological and 
mining conditions, the tool may struggle to provide accurate pre
dictions. Variations in rock types, fault lines, and other geological fea
tures can introduce challenges that the tool may not fully account for, 
leading to potential inaccuracies in hazard assessments.

4. Conclusions

PhaseNet is an advanced deep neural network model that deter
mined the onset times of seismic P waves on digital velocity seismo
grams of mining seismic events in Marcel coal mine better than the 
human expert. More than one hundred thousand digital velocity seis
mograms has been processed by PhaseNet model in very short time of 
the order of couple of minutes. This allows for automatic calculation of 
seismic parameters characterizing mining seismic tremors such as 
location and seismic energy.

The combination of spatio-temporal cluster analysis of mining 
induced seismicity and the categorical data analysis have been intro
duced to assess seismic and rockburst hazard. These two methods of 
seismic data analysis have been jointly used in the form of two way 
contingency tables providing new approach to seismic and rockburst 
hazard assessment.

Table 1 
The fundamental properties of the clusters obtained through the application of clustering of the mining tremors from Marcel mine, Poland.

Cluster No. No. of seismic events Centroid 
X[m]

Centroid Y[m] Centroid 
T[days]

Date START Date END DURATION [days]

1 117 43005 25170 783 July 13, 2019 March 13, 2020 244
2 206 42863 25083 756 July 17, 2019 March 09, 2020 236
3 311 42601 25573 240 May 10, 2018 September 04, 2018 116
4 415 42676 25657 237 April 27, 2018 October 15, 2018 171
5 307 42860 25287 357 September 11, 2018 December 15, 2018 95
6 352 42911 25208 412 June 27, 2018 April 01, 2019 278
7 69 43022 25080 649 June 03, 2019 November 02, 2019 152
8 403 42578 25696 192 March 07, 2018 July 13, 2018 128
9 19 42649 25597 842 September 26, 2019 September 29, 2020 369
10 24 42460 25947 539 November 05, 2018 December 22, 2019 412
11 310 42866 25092 546 February 07, 2019 August 31, 2019 205
12 441 42905 25068 454 October 03, 2018 April 15, 2019 195
13 111 42924 25108 1076 June 21, 2020 January 23, 2021 216
14 166 42910 25075 912 February 22, 2020 August 13, 2020 173
15 532 42484 25766 153 January 06, 2018 September 21, 2018 258
16 359 42510 25916 131 November 10, 2017 August 09, 2018 272
17 429 42772 25412 324 June 27, 2018 April 13, 2019 290
18 503 42741 25540 276 June 12, 2018 November 04, 2018 145
19 126 43172 25184 511 September 22, 2018 September 28, 2019 371
20 344 42297 26028 51 November 02, 2017 March 24, 2018 142
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An automatic computational method that uses the PhaseNet deep 
neural network model and spatio-temporal clustering has been applied 
to assess rock burst and seismic hazards in the Marcel hard coal mine in 
Poland. The seismic and rockburst hazard has been assessed employing 
two way contingency tables of two categorical variables: Seismic Energy 
Level of mining tremors and Cluster Number. As a result, a new 
comprehensive tool has been developed to automatically identify high- 
stress areas in mines in the form of spatio-temporal clusters.

The practical application of the conducted analysis was demon
strated, yielding valuable insights into the structure of seismicity within 
each cluster. The examination revealed interrelationships between 
various analyzed clusters and established a statistical association be
tween the Seismic Energy Level of mining tremors and Cluster Number. 
A particularly noteworthy statistical association was identified among 
the clusters located in close proximity to the high-energy seismic event 
responsible for the rockburst. This observation indicates a strong rela
tionship between the occurrence of the rockburst and the seismic ac
tivity in these specific clusters.

The methodology presented, which relies on a deep neural network 
model, has the potential to become a valuable and routine tool for 

mining industry in effectively managing seismic risk. Practical imple
mentation for mining industry require to integrate this tool into existing 
seismic monitoring systems. By incorporating this approach into their 
practices, mining engineers can enhance their ability to assess and 
mitigate the potential hazards associated with seismic activity, ulti
mately improving overall safety and risk management in mining 
operations.
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Table 2 
Relation between seismic energy levels and seismic energy 
values of recorded mining seismic events in the Marcel 
mine.

Seismic Energy 
Level

Seismic Energy 
Range [J]

Low <103

Medium ≥103 and <104

High ≥104 and <105

VeryHigh ≥105

Fig. 12. Graphical matrix representing contingency table of two categorical variables: Cluster Number and Seismic Energy Level. Each cell contains a filled circle 
whose size reflects magnitude of the frequency of Seismic Energy Level in each cluster.
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