4th International Symposium on Dynamic Hazards in Underground Coal Mines, Xuzhou, 2019. 06. 22-23

Monitoring, preventing and controlling rock burst in deep coal mines

Prof. Yun-liang Tan Dr. Shan-chao Hu

Shandong University of Science and Technology Email:yunliangtan@163.com

> Introduction

> Main investigations

\checkmark Risk estimation

Monitoring and early warning

✓ Risk relief

> Conclusions

Introduction

- As mining immigrates to depth, rock burst or coal bump risk gets higher and higher.
- The buried depth of 177 coalmines reaches more than 800 m in China, and rock burst is one of the worst disasters in deep coalmines.

Introduction

Rock burst disaster is strongly disruptive, and it may bring out roadway destroyed.

Risk evaluating, monitoring and controlling of deep rock burst is a long term task in coal mining engineering.

Introduction

> Introduction

> Main investigations

- \checkmark Risk evaluation
- Monitoring and early warning
- \checkmark Risk elimination
- > Conclusions

Impact energy rate index of combined coal-rock

The new evaluation index system of rock burst risk of deep coal seam

Indices	No rock burst risk	Low rock burst risk	High rock burst risk	Note	
Duration of dynamic fracture	D _T >500	50 <d<sub>T ≤500</d<sub>	D _T ≤50	C h i n a standard	
Elastic strain energy index	W _{ET} <2	2≤W _{ET} <5	W _{ET} ≥5		
Bursting energy index	K _E <1.5	1.5≤K _E <5	K _E ≥5		
Uniaxial compressive strength	R _C <7	7≤R _C <14	R _C ≥14		
Unloading impact energy rate index	W _{ZT} <6	6≤W _{ZT} <180	W _{ZT} ≥180	New	
Combined coal-rock impact energy rate index	W _{ZT} <3	3≤W _{ZT} <100	W _{ZT} ≥100	New	

fracture

Hard roof weighting aroused rock burst

strength

rate index

11

Fault aroused rock burst

Stress distribution around the fault

Mechanical model

		China standard				Added index
Index choice	Fault slip	Duration of dynamic fracture	Elastic strain energy index	Bursting energy index	Uniaxial compressive strength	Unloading impact energy rate index
	No fault slip	Duration of dynamic fracture	Elastic strain energy index	Bursting energy index	Uniaxial compressive strength	Combined coal- rock impact energy rate index 12

The new evaluation index system of rock burst risk of deep coal seam

Indices	No rock burst risk	Low rock burst risk	High rock burst risk	Note	
Duration of dynamic fracture	D _T >500	50 <d<sub>T ≤500</d<sub>	D _T ≤50	C h i n a standard	
Elastic strain energy index	W _{ET} <2	2≤W _{ET} <5	W _{ET} ≥5		
Bursting energy index	K _E <1.5	1.5≤K _E <5	K _E ≥5		
Uniaxial compressive strength	R _C <7	7≤R _C <14	R _C ≥14		
Unloading impact energy rate index	W _{ZT} <6	6≤W _{ZT} <180	W _{ZT} ≥180	New	
Combined coal-rock impact energy rate index	W _{ZT} <3	3≤W _{ZT} <100	W _{ZT} ≥100	New	

Optimal fuzzy assessment model

Membership matrix of the indices:

$$S_{5\times3} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \\ S_{41} & S_{42} & S_{43} \\ S_{51} & S_{52} & S_{53} \end{bmatrix}$$

Generalized Euclidean distance weighted by u_j :

$$\overline{D}_{j} = u_{j} \left\{ \sum_{i=1}^{5} \left[W_{i} \left(r_{i} - S_{ij} \right) \right]^{2} \right\}^{\frac{1}{2}}$$

 \vec{r} is membership matrix after normalization; \vec{u} is membership matrix to each type; \vec{W} is weight vector of the indices.

Objective
function:
$$\min\{F(u_j)\} = \min\sum_{j=a_1}^{a_2} \left\{ u_j^2 \sum_{i=1}^n \left[W_i(r_i - S_{ij}) \right]^2 \right\}$$
 Constraint
condition: $\sum_{j=a_1}^{a_2} u_j = 1$
Optimal fuzzy assessment is by
 $u_j = \left[D_j^2 \sum_{j=a_1}^{a_2} D_j^{-2} \right]^{-1}$
14

Example: No. 10 coal seam of Da'anshan Coal Mine is located in the axial of syncline, and strain rock burst occurs easily. Its related burst indexes are as follows: $D_T = 432 ms$ (Weak), $W_{FT} = 5.332$ (Strong), $K_F = 2.632$ (Weak), $R_c = 27.28 MPa$ (Strong), $W_{ST} = 132 ms^{-1}$ (Strong). According to optimal fuzzy identification model, their membership degrees are as follows: $u_1=0.01$, $u_2=0.37$, u₃=0.61, No. 10 coal seam had strong burst proneness.

Precursory features and monitoring approaches

Types	Precursory features	Monitoring methods
Strain-mode rock burst	 A long stress rising period, the intensity and pulse number of electromagnetic radiation increase continuously. A energy accumulation period exists, where both the frequency and energy of microseismic event are small. 	Microseismic, electromagnetic radiation, online stress and drilling.
Hard roof weighting aroused rock burst	 The static stress changes sharply. Micro cracks induced by roof sinking increase. Both the energy and frequency of AE event increase. 	Online stress, AE, microseismic and drilling.
Fault-slip type rock burst	 Continuous sliding-mutation: the energy grows exponentially. Sliding-stable-mutation: the energy experiences multiple peaks. 	Microseismic, online stress and drilling. 16

> Development of monitoring equipment

Microseismic system

Hardware construction

Monitor data collecting software

■ 微地震資料解释系统 Microseismic Records Interpret S	ystem. 山东科技大学 Shandong University of Science	a Technology. 🔲 🗖 🔀
File Process ManuLocation DailyLocation Display Event Setup H	lelp	
	╡Ӿ╔╔╔	18_42_03.A90 <u>*</u>
and a second secon	10 	B2 0
• • • • • • • • • • • • • • • • • • •		
		w7 e
C:\MSDATALX-js\Acqparms\2004\Nov\01\18_42_03.A90		
1 开始 San C. S家用机理量备份 🖪 Wicrosoft PowerP	🔲 微地震波和解释系 CH 📷 [a 🗘 📀 👘 🔊

Locator data collecting software

Advantages:

- Remote Intelligent Control of microseismic monitoring is achieved, by building the remote network monitoring stations.
- ✓ 'Relay' connection mode and 'Parallel' communication mode are applied to expand the monitoring scope, and the cost is saved.

KJ623 AE system

RS458 bus and Ethernet ring structure, are composed by switch board, access gateway, monitoring substations, AE sensors, etc.

Layout of AE sensors

Installation of AE sensor

AE monitoring datas

KJ743 online stress monitoring system

Monitoring arrangement and hardware

Increase of mining pressure

- Real-time wireless monitoring of mining pressure variation was achieved.
- ✓ The early warning of rock burst can be done by analyzing the variation of mining pressure.

YHC7.2-Z electromagnetic radiation system

Monitoring results

Case studies

Strain-mode rock burst—No. 1304 face in Yangcheng Mine

Hard roof weighting aroused rock burst—No. 1411 face in Huafeng Mine

Fault-slip aroused rock burst—No. 1411 face in Suncun Mine

Monitoring results

General destress flowchart

Ascending mining

Fig. 3 Sketch of strata fracture for ascending mining

Case study: No. 2 coal seam (2-6 m thickness) below No.3 coal seam was first exploited in the +570 Level of Muchengjian Coal Mine. Distance between two coal seams varied from 30.3 to 37.5 m. Rock bursts occurred in No. 3

coal seam, which has strong burst proneness.

Cross-section of No. 2 and No. 3 coal seams in Muchengjian Coal Mine

Ascending mining

Exploration results

Roof fracture distribution of No.3 coal seam

Ascending mining

Ascending mining can effectively reduce the risk of rock burst

Before ascending mining approach was adopted

After ascending mining approach was adopted

Risk relief approaches

- ✓ Strain-mode rock burst: protective seam mining, pressure relief with large diameter drill, floor cutting and coal seam infusion.
- ✓ Hard roof weighting aroused rock burst: protective seam mining, deep hole blasting, pressure relief with large diameter drill, floor cutting and coal seam infusion.
- ✓ Fault-slip aroused rock burst: protective seam mining, pressure relief with large diameter drill and coal seam infusion.
 32

> Development of risk relieving equipment

Drilling rigs

ZDY4200L

CMQS1-400/5.2S

ZLJ1100

ZDY4000S

Drilling bits

Drilling pipes

- ✓ The diameters of drilling bits range from 25 to 153 mm, with the torque of 150~250 N.m, the weld shear strength larger than 160 MPa and the yield strength larger than 392 MPa.
- ✓ The diameters of drilling pipes are 20~110 mm, with the bending strength larger than 500 MPa and the tension strength larger than 630 MPa. 34

Combined relief technologies

Using large diameter drilling as a main measure, water injecting, floor cutting and borehole blasting as supplementary measures.

 ✓ The real-time monitoring of coal seam stress and early warning during the pressure relief can be achieved.

Case studies

Strain-mode rock burst—No. 1304 face in Yangcheng Mine

Hard roof weighting aroused rock burst-- No. 1411 face in Huafeng Mine

Fault-slip aroused rock burst—No. 1411 face in Suncun Mine

> Introduction

Main investigations

\checkmark Risk estimation

 $\checkmark\,$ Monitoring and early warning

✓ Risk relief

> Conclusions

- Unloading impact energy rate index and combined coalrock impact energy rate index, are proposed to perfect the risk evaluation index-system of deep rock burst, which enhances the risk evaluating reliability.
- Each type rock burst has some specific precursory features, so some suitable monitoring approaches should be utilized for different rock burst.
- The pressure relieving and deep rock burst, should be combined both by ascending mining in large region, and by different relief approaches locally.

Thank you for your attentions

